References

  1. Barre-Sinoussi, F., et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983. 220(4599): p. 868-71.
  2. Gallo, R.C., et al., Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science, 1983. 220(4599): p. 865-7.
  3. Levy, J.A., et al., Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS, in Science. 1984. p. 840-2.
  4. Levy, J.A., G. Mitra, and M.M. Mozen, Recovery and inactivation of infectious retroviruses from factor VIII concentration. Lancet, 1984. 2(8405): p. 722-3.
  5. Clavel, F., et al., Isolation of a new human retrovirus from West African patients with AIDS. Science, 1986. 233(4761): p. 343-6.
  6. Sharp, P.M. and B.H. Hahn, Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med, 2011. 1(1): p. a006841.
  7. Zhu, T., et al., An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature, 1998. 391(6667): p. 594-7.
  8. Worobey, M., et al., Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature, 2008. 455(7213): p. 661-4.
  9. Marlink, R., et al., Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science, 1994. 265(5178): p. 1587-90.
  10. Gao, F., et al., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 1999. 397(6718): p. 436-41.
  11. Ariyoshi, K., et al., Plasma RNA viral load predicts the rate of CD4 T cell decline and death in HIV-2-infected patients in West Africa. AIDS, 2000. 14(4): p. 339-44.
  12. Berry, N., et al., Sequence specificity of the human immunodeficiency virus type 2 (hiv-2) long terminal repeat u3 region in vivo allows subtyping of the principal hiv-2 viral subtypes a and b. AIDS Res Hum Retroviruses, 2001. 17(3): p. 263-7.
  13. O'Donovan, D., et al., Maternal plasma viral RNA levels determine marked differences in mother-to-child transmission rates of HIV-1 and HIV-2 in The Gambia. MRC/Gambia Government/University College London Medical School working group on mother-child transmission of HIV. AIDS, 2000. 14(4): p. 441-8.
  14. Simon, F., et al., Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat Med, 1998. 4(9): p. 1032-7.
  15. McCutchan, F.E., et al., Diversity of envelope glycoprotein from human immunodeficiency virus type 1 of recent seroconverters in Thailand. AIDS Res Hum Retroviruses, 2000. 16(8): p. 801-5.
  16. Mastro, T.D., et al., Why do HIV-1 subtypes segregate among persons with different risk behaviors in South Africa and Thailand? AIDS, 1997. 11(1): p. 113-6.
  17. Ou, C.Y., et al., Independent introduction of two major HIV-1 genotypes into distinct high-risk populations in Thailand. Lancet, 1993. 341(8854): p. 1171-4.
  18. Van Harmelen, J.H., et al., A predominantly HIV type 1 subtype C-restricted epidemic in South African urban populations. AIDS Res Hum Retroviruses, 1999. 15(4): p. 395-8.
  19. Lole, K.S., et al., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol, 1999. 73(1): p. 152-60.
  20. Chiu, I.M., et al., Nucleotide sequence evidence for relationship of AIDS retrovirus to lentiviruses. Nature, 1985. 317(6035): p. 366-8.
  21. Wain-Hobson, S., M. Alizon, and L. Montagnier, Relationship of AIDS to other retroviruses. Nature, 1985. 313(6005): p. 743.
  22. Arthur, L.O., et al., Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science, 1992. 258(5090): p. 1935-8.
  23. Gelderblom, H., et al., MHC-antigens: constituents of the envelopes of human and simian immunodeficiency viruses. Z Naturforsch C, 1987. 42(11-12): p. 1328-34.
  24. Orentas, R.J. and J.E. Hildreth, Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res Hum Retroviruses, 1993. 9(11): p. 1157-65.
  25. Kwong, P.D., et al., Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998. 393(6686): p. 648-59.
  26. Wyatt, R., et al., The antigenic structure of the HIV gp120 envelope glycoprotein. Nature, 1998. 393(6686): p. 705-11.
  27. Carlson, L.A., et al., Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe, 2008. 4(6): p. 592-9.
  28. Wiegers, K., et al., Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol, 1998. 72(4): p. 2846-54.
  29. Ganser, B.K., et al., Assembly and analysis of conical models for the HIV-1 core. Science, 1999. 283(5398): p. 80-3.
  30. Li, S., et al., Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature, 2000. 407(6802): p. 409-13.
  31. Forshey, B.M. and C. Aiken, Disassembly of human immunodeficiency virus type 1 cores in vitro reveals association of Nef with the subviral ribonucleoprotein complex. J Virol, 2003. 77(7): p. 4409-14.
  32. Malim, M.H., et al., Functional dissection of the HIV-1 Rev trans-activator--derivation of a trans-dominant repressor of Rev function. Cell, 1989. 58(1): p. 205-14.
  33. Laspia, M.F., A.P. Rice, and M.B. Mathews, HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell, 1989. 59(2): p. 283-92.
  34. Paillart, J.C., et al., Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol, 2004. 2(6): p. 461-72.
  35. Ono, A., et al., Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(41): p. 14889-94.
  36. Chukkapalli, V., et al., Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol, 2008. 82(5): p. 2405-17.
  37. Dorfman, T., et al., Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. Journal of virology, 1994. 68(3): p. 1689-96.
  38. Yu, X., et al., The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. Journal of virology, 1992. 66(8): p. 4966-71.
  39. Gamble, T.R., et al., Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science, 1997. 278(5339): p. 849-53.
  40. Berkowitz, R.D., J. Luban, and S.P. Goff, Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays. J Virol, 1993. 67(12): p. 7190-200.
  41. Burniston, M.T., et al., Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol, 1999. 73(10): p. 8527-40.
  42. Cimarelli, A. and J. Luban, Human immunodeficiency virus type 1 virion density is not determined by nucleocapsid basic residues. J Virol, 2000. 74(15): p. 6734-40.
  43. Garrus, J.E., et al., Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell, 2001. 107(1): p. 55-65.
  44. Paxton, W., R.I. Connor, and N.R. Landau, Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol, 1993. 67(12): p. 7229-37.
  45. Martin-Serrano, J., T. Zang, and P.D. Bieniasz, HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med, 2001. 7(12): p. 1313-9.
  46. Dalgleish, A.G., et al., The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, 1984. 312(5996): p. 763-7.
  47. Klatzmann, D., et al., Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science, 1984. 225(4657): p. 59-63.
  48. Klatzmann, D., et al., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 1984. 312(5996): p. 767-8.
  49. Maddon, P.J., et al., The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell, 1986. 47(3): p. 333-48.
  50. Chan, D.C., et al., Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997. 89(2): p. 263-73.
  51. Weissenhorn, W., et al., Atomic structure of the ectodomain from HIV-1 gp41. Nature, 1997. 387(6631): p. 426-30.
  52. Baltimore, D., RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature, 1970. 226(5252): p. 1209-11.
  53. Temin, H.M. and S. Mizutani, RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 1970. 226(5252): p. 1211-3.
  54. Bowerman, B., et al., A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev, 1989. 3(4): p. 469-78.
  55. Desfarges, S., et al., HIV-1 integrase trafficking in S. cerevisiae: a useful model to dissect the microtubule network involvement of viral protein nuclear import. Yeast, 2009. 26(1): p. 39-54.
  56. McDonald, D., et al., Visualization of the intracellular behavior of HIV in living cells. J Cell Biol, 2002. 159(3): p. 441-52.
  57. Arhel, N., et al., Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods, 2006. 3(10): p. 817-24.
  58. Wlodawer, A., et al., Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science, 1989. 245(4918): p. 616-21.
  59. Navia, M.A., et al., Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature, 1989. 337(6208): p. 615-20.
  60. Muesing, M.A., D.H. Smith, and D.J. Capon, Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell, 1987. 48(4): p. 691-701.
  61. Berkhout, B., R.H. Silverman, and K.T. Jeang, Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell, 1989. 59(2): p. 273-82.
  62. Dayton, A.I., et al., The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell, 1986. 44(6): p. 941-7.
  63. Fisher, A.G., et al., The trans-activator gene of HTLV-III is essential for virus replication. Nature, 1986. 320(6060): p. 367-71.
  64. Hadzopoulou-Cladaras, M., et al., The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol, 1989. 63(3): p. 1265-74.
  65. Aiken, C., et al., Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell, 1994. 76(5): p. 853-64.
  66. Garcia, J.V. and A.D. Miller, Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature, 1991. 350(6318): p. 508-11.
  67. Rhee, S.S. and J.W. Marsh, Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization and degradation of surface CD4. J Virol, 1994. 68(8): p. 5156-63.
  68. Schwartz, O., et al., Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature medicine, 1996. 2(3): p. 338-42.
  69. Greenberg, M., et al., A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr Biol, 1998. 8(22): p. 1239-42.
  70. Fackler, O.T., et al., Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell, 1999. 3(6): p. 729-39.
  71. Saksela, K., G. Cheng, and D. Baltimore, Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J, 1995. 14(3): p. 484-91.
  72. Rosa, A., et al., HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature, 2015. 526(7572): p. 212-7.
  73. He, J., et al., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol, 1995. 69(11): p. 6705-11.
  74. Re, F., et al., Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol, 1995. 69(11): p. 6859-64.
  75. Rogel, M.E., L.I. Wu, and M. Emerman, The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol, 1995. 69(2): p. 882-8.
  76. Jowett, J.B., et al., The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol, 1995. 69(10): p. 6304-13.
  77. Popov, S., et al., Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem, 1998. 273(21): p. 13347-52.
  78. Heinzinger, N.K., et al., The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci U S A, 1994. 91(15): p. 7311-5.
  79. Van Damme, L., et al., Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med, 2008. 359(5): p. 463-72.
  80. Neil, S.J., T. Zang, and P.D. Bieniasz, Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature, 2008. 451(7177): p. 425-30.
  81. Willey, R.L., et al., Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol, 1992. 66(12): p. 7193-200.
  82. Sheehy, A.M., et al., Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 2002. 418(6898): p. 646-50.
  83. Wiegand, H.L., et al., A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J, 2004. 23(12): p. 2451-8.
  84. Zheng, Y.H., et al., Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol, 2004. 78(11): p. 6073-6.
  85. LaBranche, C.C., et al., Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J Virol, 1999. 73(12): p. 10310-9.
  86. Puffer, B.A., et al., CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J Virol, 2002. 76(6): p. 2595-605.
  87. Alkhatib, G., et al., CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996. 272(5270): p. 1955-8.
  88. Choe, H., et al., The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 1996. 85(7): p. 1135-48.
  89. Deng, H., et al., Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996. 381(6584): p. 661-6.
  90. Doranz, B.J., et al., A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996. 85(7): p. 1149-58.
  91. Dragic, T., et al., HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996. 381(6584): p. 667-73.
  92. Feng, Y., et al., HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996. 272(5263): p. 872-7.
  93. Berger, E.A., P.M. Murphy, and J.M. Farber, Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999. 17: p. 657-700.
  94. Eckert, D.M. and P.S. Kim, Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem, 2001. 70: p. 777-810.
  95. Kilby, J.M., et al., Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med, 1998. 4(11): p. 1302-7.
  96. Aggarwal, A., et al., HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic, 2017. 18(6): p. 392-410.
  97. Rizzuto, C.D., et al., A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science, 1998. 280(5371): p. 1949-53.
  98. Groenink, M., et al., Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science, 1993. 260(5113): p. 1513-6.
  99. Margolis, L. and R. Shattock, Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved? Nat Rev Microbiol, 2006. 4(4): p. 312-7.
  100. Schuitemaker, H., A.B. van 't Wout, and P. Lusso, Clinical significance of HIV-1 coreceptor usage. J Transl Med, 2011. 9 Suppl 1: p. S5.
  101. Berkowitz, R.D., et al., CXCR4 and CCR5 expression delineates targets for HIV-1 disruption of T cell differentiation. J Immunol, 1998. 161(7): p. 3702-10.
  102. Bleul, C.C., et al., The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A, 1997. 94(5): p. 1925-30.
  103. de Roda Husman, A.M., et al., CC chemokine receptor 5 cell-surface expression in relation to CC chemokine receptor 5 genotype and the clinical course of HIV-1 infection. J Immunol, 1999. 163(8): p. 4597-603.
  104. Rossio, J.L., et al., Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol, 1998. 72(10): p. 7992-8001.
  105. Fatkenheuer, G., et al., Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N Engl J Med, 2008. 359(14): p. 1442-55.
  106. Gulick, R.M., et al., Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med, 2008. 359(14): p. 1429-41.
  107. De Clercq, E., et al., Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother, 1994. 38(4): p. 668-74.
  108. Schols, D., et al., Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med, 1997. 186(8): p. 1383-8.
  109. Moyle, G., et al., Proof of activity with AMD11070, an orally bioavailable inhibitor of CXCR4-tropic HIV type 1. Clin Infect Dis, 2009. 48(6): p. 798-805.
  110. Gallay, P., et al., HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci U S A, 1997. 94(18): p. 9825-30.
  111. Bukrinsky, M.I., et al., Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A, 1992. 89(14): p. 6580-4.
  112. Stremlau, M., et al., The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature, 2004. 427(6977): p. 848-53.
  113. Sakuma, R., et al., Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med, 2007. 13(5): p. 631-5.
  114. Stremlau, M., et al., Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A, 2006. 103(14): p. 5514-9.
  115. Ryoo, J., et al., The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med, 2014. 20(8): p. 936-41.
  116. Bushman, F.D., T. Fujiwara, and R. Craigie, Retroviral DNA integration directed by HIV integration protein in vitro. Science, 1990. 249(4976): p. 1555-8.
  117. Craigie, R. and F.D. Bushman, HIV DNA integration. Cold Spring Harb Perspect Med, 2012. 2(7): p. a006890.
  118. Pace, M.J., et al., Directly infected resting CD4+T cells can produce HIV Gag without spreading infection in a model of HIV latency. PLoS Pathog, 2012. 8(7): p. e1002818.
  119. O'Carroll, I.P., et al., Elements in HIV-1 Gag contributing to virus particle assembly. Virus Res, 2013. 171(2): p. 341-5.
  120. Briggs, J.A. and H.G. Krausslich, The molecular architecture of HIV. J Mol Biol, 2011. 410(4): p. 491-500.
  121. Poon, B., et al., Cell cycle arrest by Vpr in HIV-1 virions and insensitivity to antiretroviral agents. Science, 1998. 281(5374): p. 266-9.
  122. Greenway, A.L., et al., Nef 27, but not the Nef 25 isoform of human immunodeficiency virus-type 1 pNL4.3 down-regulates surface CD4 and IL-2R expression in peripheral blood mononuclear cells and transformed T cells. Virology, 1994. 198(1): p. 245-56.
  123. Malim, M.H. and P.D. Bieniasz, HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006940.
  124. Morris, G.C. and C.J. Lacey, Microbicides and HIV prevention: lessons from the past, looking to the future. Curr Opin Infect Dis, 2010. 23(1): p. 57-63.
  125. Van Damme, L., et al., Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet, 2002. 360(9338): p. 971-7.
  126. Skoler-Karpoff, S., et al., Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet, 2008. 372(9654): p. 1977-87.
  127. Abdool Karim, Q., et al., Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science, 2010. 329(5996): p. 1168-74.
  128. Cohen, M.S., et al., Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med, 2011. 365(6): p. 493-505.
  129. Connor, E.M., et al., Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med, 1994. 331(18): p. 1173-80.
  130. Carlson, J.M., et al., HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science, 2014. 345(6193): p. 1254031.
  131. Shaw, G.M. and E. Hunter, HIV transmission. Cold Spring Harb Perspect Med, 2012. 2(11).
  132. Parrish, N.F., et al., Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U S A, 2013. 110(17): p. 6626-33.
  133. Shen, R., et al., Vaginal myeloid dendritic cells transmit founder HIV-1. J Virol, 2014. 88(13): p. 7683-8.
  134. Mlcochova, P., et al., Vpx complementation of 'non-macrophage tropic' R5 viruses reveals robust entry of infectious HIV-1 cores into macrophages. Retrovirology, 2014. 11: p. 25.
  135. Fenton-May, A.E., et al., Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology, 2013. 10: p. 146.
  136. Liao, H.X., et al., Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic envelope glycoproteins of human immunodeficiency virus type 1. J Virol, 2013. 87(8): p. 4185-201.
  137. Parker, Z.F., et al., Transmitted/founder and chronic HIV-1 envelope proteins are distinguished by differential utilization of CCR5. J Virol, 2013. 87(5): p. 2401-11.
  138. Parrish, N.F., et al., Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin alpha4beta7. PLoS Pathog, 2012. 8(5): p. e1002686.
  139. Wilen, C.B., et al., Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins. J Virol, 2011. 85(17): p. 8514-27.
  140. Salazar-Gonzalez, J.F., et al., Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med, 2009. 206(6): p. 1273-89.
  141. Siliciano, J.D., et al., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med, 2003. 9(6): p. 727-8.
  142. Crooks, A.M., et al., Precise Quantitation of the Latent HIV-1 Reservoir: Implications for Eradication Strategies. J Infect Dis, 2015. 212(9): p. 1361-5.
  143. Kearney, M.F., et al., Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog, 2014. 10(3): p. e1004010.
  144. Josefsson, L., et al., The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc Natl Acad Sci U S A, 2013. 110(51): p. E4987-96.
  145. Cohn, L.B., et al., HIV-1 integration landscape during latent and active infection. Cell, 2015. 160(3): p. 420-32.
  146. Maldarelli, F., et al., HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science, 2014. 345(6193): p. 179-83.
  147. Simonetti, F.R., et al., Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci U S A, 2016. 113(7): p. 1883-8.
  148. Wagner, T.A., et al., HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science, 2014. 345(6196): p. 570-3.
  149. Strategies for Management of Antiretroviral Therapy Study, G., et al., CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med, 2006. 355(22): p. 2283-96.
  150. Doyle, J.S., et al., New hepatitis C antiviral treatments eliminate the virus. Lancet, 2017. 390(10092): p. 358-359.
  151. Migueles, S.A. and M. Connors, Success and failure of the cellular immune response against HIV-1. Nat Immunol, 2015. 16(6): p. 563-70.
  152. Migueles, S.A. and M. Connors, Long-term nonprogressive disease among untreated HIV-infected individuals: clinical implications of understanding immune control of HIV. JAMA, 2010. 304(2): p. 194-201.
  153. Gupta, R.K., et al., HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature, 2019. 568(7751): p. 244-248.
  154. Henrich, T.J., et al., Antiretroviral-Free HIV-1 Remission and Viral Rebound After Allogeneic Stem Cell Transplantation: Report of 2 Cases. Ann Intern Med, 2014. 161(5): p. 319-27.
  155. Cummins, N.W., et al., Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study. PLoS Med, 2017. 14(11): p. e1002461.
  156. Persaud, D., et al., Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med, 2013. 369(19): p. 1828-35.
  157. Luzuriaga, K., et al., Viremic relapse after HIV-1 remission in a perinatally infected child. N Engl J Med, 2015. 372(8): p. 786-8.
  158. Allers, K., et al., Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood, 2011. 117(10): p. 2791-9.
  159. Hutter, G., et al., Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med, 2009. 360(7): p. 692-8.
  160. Henrich, T.J., et al., Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis, 2013. 207(11): p. 1694-702.
  161. Martinson, J.J., et al., Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet, 1997. 16(1): p. 100-3.
  162. Kordelas, L., et al., Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N Engl J Med, 2014. 371(9): p. 880-2.
  163. Petit, N., et al., Targeting both viral and host determinants of human immunodeficiency virus entry, using a new lentiviral vector coexpressing the T20 fusion inhibitor and a selective CCL5 intrakine. Hum Gene Ther Methods, 2014. 25(4): p. 232-40.
  164. Savkovic, B., et al., A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol, 2014. 10(6): p. e1003681.
  165. Tebas, P., et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med, 2014. 370(10): p. 901-10.
  166. Hofer, U., et al., Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice. J Infect Dis, 2013. 208 Suppl 2: p. S160-4.
  167. Didigu, C.A., et al., Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood, 2014. 123(1): p. 61-9.
  168. Symonds, G.P., et al., The use of cell-delivered gene therapy for the treatment of HIV/AIDS. Immunol Res, 2010. 48(1-3): p. 84-98.
  169. Younan, P.M., et al., Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood, 2013. 122(2): p. 179-87.
  170. Suzuki, K., et al., Promoter Targeting shRNA Suppresses HIV-1 Infection In vivo Through Transcriptional Gene Silencing. Mol Ther Nucleic Acids, 2013. 2: p. e137.
  171. Suzuki, K., et al., Transcriptional gene silencing of HIV-1 through promoter targeted RNA is highly specific. RNA Biol, 2011. 8(6): p. 1035-46.
  172. Suzuki, K. and A.D. Kelleher, Transcriptional regulation by promoter targeted RNAs. Curr Top Med Chem, 2009. 9(12): p. 1079-87.
  173. Pace, M.J., L. Agosto, and U. O'Doherty, R5 HIV env and vesicular stomatitis virus G protein cooperate to mediate fusion to naive CD4+ T Cells. J Virol, 2011. 85(1): p. 644-8.
  174. Ahlenstiel, C.L. and S.G. Turville, Delivery of gene therapy to resting immune cells for an HIV cure. Curr Opin HIV AIDS, 2019. 14(2): p. 129-136.
  175. June, C.H., et al., CAR T cell immunotherapy for human cancer. Science, 2018. 359(6382): p. 1361-1365.
  176. Zhen, A., et al., Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathog, 2017. 13(12): p. e1006753.
  177. Burton, D.R. and L. Hangartner, Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. Annu Rev Immunol, 2016. 34: p. 635-59.
  178. Leong, Y.A., A. Atnerkar, and D. Yu, Human Immunodeficiency Virus Playing Hide-and-Seek: Understanding the TFH Cell Reservoir and Proposing Strategies to Overcome the Follicle Sanctuary. Front Immunol, 2017. 8: p. 622.
  179. Haran, K.P., et al., Simian Immunodeficiency Virus (SIV)-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication. Front Immunol, 2018. 9: p. 492.
  180. Kulkosky, J., et al., Intensification and stimulation therapy for human immunodeficiency virus type 1 reservoirs in infected persons receiving virally suppressive highly active antiretroviral therapy. J Infect Dis, 2002. 186(10): p. 1403-11.
  181. Prins, J.M., et al., Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS, 1999. 13(17): p. 2405-10.
  182. Archin, N.M., et al., Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature, 2012. 487(7408): p. 482-5.
  183. Elliott, J.H., et al., Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog, 2014. 10(10): p. e1004473.
  184. Lehrman, G., et al., Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet, 2005. 366(9485): p. 549-55.
  185. Rasmussen, T.A., et al., Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV, 2014. 1(1): p. e13-21.
  186. Sogaard, O.S., et al., The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo. PLoS Pathog, 2015. 11(9): p. e1005142.
  187. Bouchat, S., et al., Sequential treatment with 5-aza-2'-deoxycytidine and deacetylase inhibitors reactivates HIV-1. EMBO Mol Med, 2016. 8(2): p. 117-38.
  188. Cillo, A.R., et al., Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A, 2014. 111(19): p. 7078-83.